Bounds on the Fibonacci Number of a Maximal Outerplanar Graph
نویسنده
چکیده
All graphs in this article are finite, undirected, without loops or multiple edges. Let G be a graph with vertices vl5 v2,..., vn. The complement in G of a subgraph H is the subgraph of G obtained by deleting all edges in H. The join GxvG2 of two graphs GY and G2 is obtained by adding an edge from each vertex in Gl to each vertex in G2. Let Kn be the complete graph and Pn the path on n vertices. The concept Fibonacci number f of a simple graph G refers to the number of subsets S of V(G) such that no two vertices in S are adjacent [5]. Accordingly, the total number of subsets of {1,2,..., n) such that no two elements are adjacent is Fn+l, the (n + if* Fibonacci number.
منابع مشابه
Distance domination, guarding and vertex cover for maximal outerplanar graph
This paper discusses a distance guarding concept on triangulation graphs, which can be associated with distance domination and distance vertex cover. We show how these subjects are interconnected and provide tight bounds for any n-vertex maximal outerplanar graph: the 2d-guarding number, g2d(n) = ⌊ n 5 ⌋; the 2d-distance domination number, γ2d(n) = ⌊ n 5 ⌋; and the 2d-distance vertex cover numb...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملCombinatorial bounds on connectivity for dominating sets in maximal outerplanar graphs
In this article we study some variants of the domination concept attending to the connectivity of the subgraph generated by the dominant set. This study is restricted to maximal outerplanar graphs. We establish tight combinatorial bounds for connected domination, semitotal domination, independent domination and weakly connected domination for any n-vertex maximal outerplaner graph.
متن کاملOn dominating sets of maximal outerplanar graphs
A dominating set of a graph is a set S of vertices such that every vertex in the graph is either in S or is adjacent to a vertex in S. The domination number of a graph G, denoted γ (G), is theminimum cardinality of a dominating set ofG. We show that ifG is an n-vertexmaximal outerplanar graph, then γ (G) ≤ (n + t)/4, where t is the number of vertices of degree 2 in G. We show that this bound is...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1983